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Abstract: In this work, we consider the quadratic generalized Kortewegde Vries (QGKdV) equation that is a
mathematical model of waves on shallow water surfaces. Numerical solution of a Cauchy boundary-value problem
with known exact solution is developed in details. Discretization is first accomplished by means of a quadratic finite
element method. Then, the obtained system of first-order ordinary differential equations is discretized through
a backward finite difference formula. Finally, the derived non linear algebraic system is solved by Newton’s
method with the Gauss elimination method as the inner iteration solver. Numerical results are presented in order to
illustrate the efficiency of the present numerical treatment. In addition, a general form of multiple-soliton solution
of QGKdV equation is obtained using the simplest equation method with Burgers equation as simplest equation.

Key–Words: KdV equation, Finite element method, Finite difference method.

1 Introduction

Korteweg-de Vries equation (KdV), the names of
the mathematicians Diederik Johannes Korteweg and
Gustav de Vries described the behavior of some types
of waves in shallow waters by a nonlinear differential
equation [11]. These mathematicians used their the-
ory to explain wave propagation phenomena such as
waves. They were able to determine many types of

wave profiles such as nocturnal or solitons. This the-
ory had a significant impact on modern mathematical
problems of a nonlinear type in physics, electronic-
s and biology especially in optical fibers. Moreover,
Tsunamis are sea waves that cause gigantic walls of
water devastating. The modeling of this phenomenon
is possible thanks to the KdV equation. Although the
solitons propagate in a depth of 4000 m (oceans), the
wavelength of 100 km allows to approach the study in
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a shallow water.
Many researches concerning this problem have

been treated by many authors in recent years. Such au-
thors as [2],[13] which has established the analytical
solutions to particular problems. Moreover, as well as
concerning the numerical methods to solve the KdV
equation, see [9, 16, 21] for finite difference method,
as well [6, 7, 8],[10] for the method of finite elements.
In addition, they have other methods to get the KdV
numerical solutions, such as pseudo-spectral method
[2], and heat balance integral method [12].

The paper is organized in five sections, in Section
2 we propose the QGKdV equation with the initial and
the boundary conditions, especially, we study the so-
called soliton solutions. In Section 3 a quadratic finite
element method is applied for the discretization of the
spatial variable, while the system of ordinary differen-
tial equations for the time variable is solved by means
of an explicit finite difference method. In Section 4
the numerical results obtained for a test problem are
presented with the known exact solution. In Section
5 we present our conclusions about the efficiency of
Galerkin quadratic finite element method.

2 Statement of the model problems

We consider the KdV equation which is a nonlinear
partial differential equation of third order with the
boundary conditions and the initial condition given by


∂u

∂t
+

∂

∂x

(
∂2u

∂x2
+ u4

)
= 0 0 ≤ x ≤ L, t > 0,

u(0, t) = u(L, t) = 0 t > 0,

u(x, 0) = (Asech2(Bx+D))
1
3 0 ≤ x ≤ L.

(1)
This problem has the exact solution [1], called

”soliton” define as follows

u(x, t) =
(
Asech2(Bx− Ct+D)

) 1
3 ,

where A, B, C and D are determined scalars so that
the differential equation in (1) is satisfied. The calcu-
lations make it possible to find:

A =
10

9
B2, C =

4

9
B3, B,D ∈ R. (2)

2.1 Study the solition solution

It is well known that the QGKdV equation

∂u

∂t
+

∂

∂x

(
∂2u

∂x2
+ u4

)
= 0 x, t ∈ R, (3)

have explicit traveling wave solutions. Let

Q(x) =

(
5

2 cosh2(32x)

) 1
3

,

be the unique H1 positive solution (up to translations)
of

Qxx +Q4 = Q on R, (4)

Then, for any c > 0, x0 ∈ R, the functions

Rc,x0(t, x) = c
1
3Q(
√
c(x− x0 − ct)),

is soliton solutions of the quadratic gKdV equations
(3). The quadratic (gKdV) is a Hamiltonian system.
In particular, three quantities are kept, at least formal-
ly:∫

R
u(t, x)dx =

∫
R
u0(x)dx,∫

R
u(t, x)2dx =

∫
R
u0(x)2dx, (mass L2),

E(u(t)) =
1

2

∫
R
u(t, x)2xdx−

1

5

∫
R
u(t, x)(t, x)5dx

= E(u0) (energy).

The natural energy space for the study of this e-
quation is thereforeH1. Let us note, however, that the
first conservation law is little used, because it is not a
signed quantity, and that moreover it is not situated in
the space of energy.

Let us recall some general results concerning the
solutions of (3).

Theorem 1. (
(
Local existence in time, Kenig, Ponce

et Vega ([5])
)
Let u0 ∈ H1. There exists T =

T (‖u0‖H1) and u ∈ C0([0;T [;H1) solution of
quadratic (gKdV)(3), unique in a suitable class. Such
a solution keep the mass L2 and the energy.

Theorem 2. (Stability of solitons [18]) Let u0 ∈
H1(R) and let u(t) be the globlal H1 solution of
quadratic (gKdV)(3) satisfying u(0) = u0. For all
ε > 0, there exists δ > 0 such that if ‖u0−Q‖H1 ≤ δ,
then for all t ∈ R, there exists x(t) ∈ R such that

‖u(t, .+ x(t))−Q‖H1 ≤ ε.

To more details we guide the reader’s to
Benjamin[3],Bona [4], Weinstein[18].

Theorem 3. (Asymptotic stability of solitons [19])Let
u0 ∈ H1(R) and let u(t) be the globlal H1 solution
of quadratic (gKdV)(3) satisfying u(0) = u0. There
exists δ > 0 such that if

‖u0 −Q‖H1 ≤ δ,

WSEAS TRANSACTIONS on MATHEMATICS Abdelkrim Latreche, Farhan Ismail

E-ISSN: 2224-2880 221 Volume 17, 2018



then there exists c+ close to1, and for all t ∈ R+,
there exist x(t) ∈ R such that

‖u(t)−Qc+(.−x(t))‖H1(x>t/10) → 0, as t→ +∞,

and
x′(t)→ c+, as t→ +∞.

As well as concerning the multisoliton solutions,
revise [20].

2.2 Multiple-soliton solution

In this section, we apply the simplest equation method
to the KdV equation (3), more details were given in
Refs. [], as follows:

Step 1. Consider the PDE (5) (QGKdV).

Step 2. The traveling wave variable

u(x, t) = U(ξ), ξ = ki x− ω t, (5)

permits us to convert the PDE (5) into the follow-
ing ODE form

−ω U + ki U
4 + k3i Uξ,ξ = 0, (6)

where U = U(ξ) is an unknown function to be
determined later.

Step 3. The simplest equation method depends on ex-
panding the traveling wave solutions U(ξ) of Eq.
(5) as a finite series

U(ξ) =
n∑
i=0

ai f(ξ)i am 6= 0, (7)

where ai are constants to be determined later and
f are the functions that satisfy some simplest or-
dinary differential equations. These types of e-
quations are called the simplest equations that are
of a lesser order than Eqs. (6) and, the general so-
lution of them is known (or we know the way of
finding its general solution, or at least we know
some particular solutions of this equation).

In this study, we use the Burgers’ equation as
the simplest equation, which is a completely inte-
grable equation and a fundamental second ODE
from fluid mechanics, to construct the N-soliton
solutions [17, 15, 14]. Consider the Burgers’ e-
quation

ut − α u ux − uxx = 0, u = u(x, t) (8)

and its ODE form

df

dξ
= ψ − pψ2 + q, (9)

where the wave variables f(ξ) = u(x, t) and ξ =
k x − c t, the dispersion relation c = −k2, p =
α
2k , and q = β

k2
. Eq. (9) has a general form of

N-soliton solution as follows:

f(ξ) =

(
2

α

) ∑N
i=0 ki e

ξi

1 +
∑N

i=0 e
ξi
. (10)

Step 4. The parameter n of Eq. (7) is a positive integer
and it can be found by balancing the highest or-
der derivative Uξ,ξ with the nonlinear one U4 in
Eq. (6). So, we obtain n = 2

3 . To get analytical
solution, n should be integer [14]. Therefore, it
requires the following transformation

U = (V (ξ))
1
3 , (11)

that transforms (6) to

9 ω V 3 + 9 ki V
3 + 3 k3i V Vξ,ξ − 2 k3i V

2
ξ = 0,

(12)
where V = V (ξ). Now, by balancing the terms
V 3 and V Vξ,ξ in Eqs. (19) gives n = 2. There-
fore, exact solution of (19) reads

V (ξ) = a0 + a1 h(ξ) + a2 h(ξ)2. (13)

Step 5. Substituting (13) with (9) results in a polynomial
in f(ξ), and equating all coefficient of the poly-
nomial to zero yields a set of algebraic equations
for a0, a1, a2, α, β. Solving these algebraic e-
quations with the help of Mathematica software,
the following results are obtained

a0 = −1

9

(
25k2i

)
, a1 = −25k4i

9β
, a2 = −125k6i

18β2
,

α = −5k3i
β
, ω = −k3i ,

where ki, i = 1, 2, . . . are arbitrary constants
and ω is the dispersion relation of QKdV equa-
tion.

Step 6. Now, substituting the results with the N-soliton
solution (10) into (5) using (18), we get a general
form of N-soliton solution of Eq. (5) as follows,
see Figs. 1 and 2 for n = 1,

u =
−5

9 (
∑n

i=1 e
xki−tω + 1)

2

(2(
n∑
i=1

kie
xki−tω)2

+((

n∑
i=1

exki−tω + 1)

(3
n∑
i=1

exki−tω + 5)
n∑
i=1

k2i e
xki−tω)/

n∑
i=1

exki−tω)). (14)
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Figure 1: Soliton solution (14) of the QGKdV equation
using Burgers’ equation, at ki = 1.

Figure 2: 2-D solitary solution (14) of the QGKdV equa-
tion using Burgers’ equation, at ki = 1.

3 Method of solution

3.1 Weak formulation of the continuous
problem

Let v(x) ∈ V = H1
0 (]0, L[). By multiplying the equa-

tion (1) by the function v and integrating for x over the
interval [0, L], we obtain∫ L

0
v(x)

(
∂u

∂t
+

∂

∂x

(
∂2u

∂x2
+ u4

))
dx = 0,

(15)
thanks to integration by parts, we obtain the following
weak formulation: ∀v ∈ V∫ L

0
v(x)

∂u

∂t
dx−

∫ L

0
v(x)

∂2u

∂x2
dx−

∫ L

0
v′(x)u4dx = 0.

(16)

3.2 Discreet formulation of Galerkin

Let Vh ⊂ V of finite dimension N with the ba-
sis {φ1, ..., φN}. If uh(x, t) denotes an approximate

solution of u(x, t) in the space Vh ⊂ V , then the
Galerkin method gives (for t fixed)

Find uh(., t) ∈ Vh such as :∫ L

0
v(x)

∂uh
∂t

dx−
∫ L

0
v(x)

∂2uh
∂x2

dx−
∫ L

0
v′(x)u4hdx = 0

∀v ∈ Vh.
(17)

Now, we assume that the approximate solution
uh(x, t) can be expressed in the basis {φi} as follows:

uh(x, t) =
N∑
j=1

Uj(t)φj(x), (18)

where Uj(t) are undetermined coefficients.
Substituting (18) in the formulation (17) and tak-

ing v = φi (i = 1, · · · , N), after simplifications, (17)
comes (for t fixed)



FindU1(t), · · · , UN (t) such as:
N∑
j=1

(∫ L

0
φj(x)φi(x)dx

)
u′j(t)

−
N∑
j=1

(∫ L

0
φ′′j (x)φ′i(x)dx

)
uj(t)

−
∫ L

0

 N∑
j=1

uj(t)φj(x)

4

φ′i(x)dx = 0 ∀i ∈ {1, · · · , N}.

(19)
Thus, we obtain a system of nonlinear ordinary

differential equations for the variable t. At this level,
any discretization method can be applied to calculate
the coefficients in the system equations (19). In the
following, only the quadratic finite element method is
adopted.

3.3 Finite Element Discretization

For a spatial step h = L
N+1 , the interval [0, L] is subdi-

vided intoN+1 subintervals [xi, xi+1], i = 0, · · · , N,
of length equals h. Thus, the nodes are such that
0 = x0 < x1 < · · · < xN+1 = L with xi = ih.
The basic quadratic functions φ1, . . . , φN are defined
by:

φi(x) = − 1

h2

{
(xi−1 − x)(xi+1 − x) if x ∈ [xi−1, xi+1],

0 elsewhere,
(20)

with i = 1, . . . , N.
We note that for the nodes x0 and xN+1 the basic

functions are not considered because according to the

WSEAS TRANSACTIONS on MATHEMATICS Abdelkrim Latreche, Farhan Ismail

E-ISSN: 2224-2880 223 Volume 17, 2018



boundary conditions, the values in x = 0 and x = L
are given.

This choice of the basic functions φi(x) makes it
possible to rewrite (19) in the following form(∫ xi

xi−1

φi−1(x)φi(x)dx

)
U ′i−1(t)

+

(∫ xi

xi−1

φ2i (x)dx

)
U ′i(t)

+

(∫ xi+1

xi

φi+1(x)φi(x)dx

)
U ′i+1(t)

−

(∫ xi

xi−1

φ′′i−1(x)φ′i(x)dx

)
Ui−1(t)

−

(∫ xi+1

xi−1

φ′′i (x)φ′i(x)dx

)
Ui(t)

−
(∫ xi+1

xi

φ′′i+1(x)φ′i(x)dx

)
Ui+1(t)

−
∫ xi+1

xi−1

(Ui−1(t)φi−1(x) + Ui(t)φi(x)

+ Ui+1(t)φi+1(x))4φ′i(x)dx = 0,

(21)

for i = 1, · · · , N .

The development of the four degree allows to
write the last term of (21), which is the only nonlinear
term, as follows:

−
∫ xi+1

xi−1

(
Ui−1(t)φi−1(x) (22)

+ Ui(t)φi(x) + Ui+1(t)φi+1(x)
)4
φ′i(x)dx

= −

(∫ ih

(i−1)h
φ4i−1(x)φ′i(x)dx

)
U4
i−1(t)

−

(∫ (i+1)h

(i−1)h
φ4i (x)φ′i(x)dx

)
U4
i (t) (23)

−

(∫ (i+1)h

ih
φ4i+1(x)φ′i(x)dx

)
U4
i+1(t)

−6

(∫ ih

(i−1)h
φ2i−1(x)φ2i (x)φ′i(x)dx

)
U2
i−1(t)U

2
i (t)

−6

(∫ (i+1)h

ih
φ2i (x)φ2i+1(x)φ′i(x)dx

)
U2
i (t)U2

i+1(t)

−4

(∫ ih

(i−1)h
φ3i−1(x)φi(x)φ′i(x)dx

)
U3
i−1(t)Ui(t)

−4

(∫ (i+1)h

ih
φ3i (x)φi+1(x)φ′i(x)dx

)
U3
i (t)Ui+1(t)

−4

(∫ ih

(i−1)h
φi−1(x)φ3i (x)φ′i(x)dx

)
Ui−1(t)U

3
i (t)

−4

(∫ (i+1)h

ih
φi(x)φ3i+1(x)φ′i(x)dx

)
Ui(t)U

3
i+1(t).

After calculations, the integral terms are given by:∫ xi

xi−1

φi−1φidx =
11h

30
,

∫ xi+1

xi−1

φ2i dx =
16h

15
,

∫ ih

(i−1)h
φi+1φidx =

11h

30
,

∫ ih

(i−1)h
φ′′i−1(x)φ′i(x)dx =

2

h2
,

∫ (i+1)h

(i−1)h
φ′′i (x)φ′i(x)dx = 0,

∫ ih

(i+1)h
φ′′i+1(x)φ′i(x)dx = − 2

h2
,
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∫ ih

(i−1)h
φ4i−1(x)φ′idx) =

193

315
,

∫ (i+1)h

(i−1)h
φ4i (x)φ′idx = 0,

∫ (i+1)h

ih
φ4i+1(x)φ′idx = −193

315
,∫ ih

(i−1)h
φ2i−1(x)φ2i (x)φ′i(x)dx =

103

630
,

∫ (i+1)h

ih
φ2i+1(x)φ2i (x)φ′i(x)dx = −103

630
,∫ ih

(i−1)h
φ3i−1(x)φi(x)φ′i(x)dx =

103

420
,

∫ (i+1)h

ih
φ3i (x)φi+1(x)φ′i(x)dx = − 193

1260
,∫ ih

(i−1)h
φi−1(x)φ3i (x)φ′i(x)dx =

193

1260
,

∫ (i+1)h

ih
φi(x)φ3i+1(x)φ′i(x)dx = −103

420
.

Then, the equation (21) becomes(
11h

30

)
U ′i−1(t) +

(
16h

15

)
U ′i(t) +

(
11h

30

)
U ′i+1(t)

−
(

2

h2

)
Ui−1(t) +

(
2

h2

)
Ui+1(t)−

(
193

315

)
U4
i−1(t)

+

(
193

315

)
U4
i+1(t)−

(
103

105

)
U2
i−1(t)U

2
i (t)

+

(
103

105

)
U2
i (t)U2

i+1(t)−
(

103

105

)
U3
i−1(t)Ui(t)

+

(
193

315

)
U3
i (t)Ui+1(t)−

(
193

315

)
Ui−1(t)U

3
i (t)

+

(
103

105

)
Ui(t)U

3
i+1(t) = 0,

(24)

this system can be rewritten in the following matrix
form:

MU ′(t) +KU(t) + (G(U(t)))U(t) = 0, (25)

where

M = (Mij) =

∫ L

0
φi(x)φj(x)dx,

K = (Kij) =

∫ L

0
φ′′i (x)φ′j(x)dx,

U(t) = (U1(t), · · · , UN (t))t,

U ′(t) = (U ′1(t), · · · , U ′N (t))t,

and the matrix G(U(t)) contains terms of order three
with respect to the components of U(t). This form
will be explained further.

The system (25) is a system of ordinary differen-
tial equations of order one, which can be solved nu-
merically by means of many methods. Here, we apply
the finite difference method in the implicit form for
the discretization of U ′(t). So, for a time step δt and
the nodes are tj = jδt with j = 0, 1, · · · , we obtain
the following discrete system:

1

δt
MU (j) +KU (j) + (G(U (j)))U (j) =

1

δt
MU (j−1), (26)

where U (j) is the approximation of U(tj) and U (0) is
given by the initial condition in (1). To solve (26)
we apply the Newton method as the technique for the
external iteration, and the Gauss elimination method
for the internal iteration.

4 The numerical results

To illustrate the performance of the numerical method
developed in this paper, a test problem of the type (1)
is considered. All computations are done by taking the
parameters L = 2, B =

√
0.9 and D = −1, while the

steps are h = 0.0125 and δt = 0.001 . The numerical
solutions obtained at the nodes are compared with the
exact solutions. The comparison is presented in the
tables 1-2 for the values t = 0.005 and t = 0.01. To
measure the difference between numerical solutions
and exact solutions, the percentage error is used table
3. On the other hand, the figures 3-6 show that numer-
ical solutions reproduce satisfactorily the behavior of
the exact solution of the test problem.
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Table 1: Comparison between the numerical and exact
solutions at t = 0.005

x Numerical solutions Exact solutions
0.0 0.000000 0.000000
0.1 0.775213 0.784074
0.2 0.805622 0.819348
0.3 0.847203 0.853386
0.4 0.879001 0.885529
0.5 0.909311 0.915062
0.6 0.935602 0.941246
0.7 0.957018 0.963350
0.8 0.975035 0.980704
0.9 0.986871 0.992744
1.0 0.991033 0.999057
1.1 0.995112 0.999422
1.2 0.988002 0.993826
1.3 0.976800 0.982465
1.4 0.959113 0.965731
1.5 0.938503 0.944172
1.6 0.907744 0.918447
1.7 0.876541 0.881282
1.8 0.857001 0.857418
1.9 0.819851 0.823574
2.0 0.000000 0.000000

5 Conclusion

In this paper, we deduce that finite element solution-
s satisfy the physical behavior of the problem for a
KdV equation for a nonlinear term of four degree (T-
sunamis). Finite element solutions for small moment
problems have greater accuracy than other numerical
solutions. So, solving the KdV equation for a nonlin-
ear term of degree four by a finite element method al-
lows us to achieve a relatively accurate resolution. Be-
sides, multiple-soliton solutions of the QGKdV equa-
tion are obtained using the simplest equation method
as simplest equations. In this study, the obtained so-
lutions are significant and important in the study of
nonlinear and dispersive waves problems. The results
of this paper show that the applied methods are effec-
tive and powerful techniques to study many nonlinear
evolution equations which have several applications in
mathematical physics and engineering.

Table 2: Comparison between the numerical and exact
solutions at t = 0.01

x Numerical solutions Exact solutions
0.0 0.000000 0.000000
0.1 0.784788 0.783360
0.2 0.820043 0.818652
0.3 0.854049 0.852721
0.4 0.886147 0.884909
0.5 0.915621 0.914502
0.6 0.941730 0.940760
0.7 0.963746 0.962953
0.8 0.980999 0.980407
0.9 0.992927 0.992558
1.0 0.999123 0.998989
1.1 0.999368 0.999473
1.2 0.993654 0.993995
1.3 0.982182 0.982747
1.4 0.965345 0.966115
1.5 0.943696 0.944646
1.6 0.917895 0.918998
1.7 0.888668 0.889894
1.8 0.856758 0.858077
1.9 0.822882 0.824266
2.0 0.000000 0.000000

Table 3: Percentage of the Problem 1 for some select-
ed values of x

x t=0.005 t=0.01
0.2 1.6752 0.1699
0.4 0.7372 0.1399
0.6 0.5996 0.1031
0.8 0.5781 0.0604
1.0 0.8032 0.0134
1.2 0.5860 0.0343
1.4 0.6853 0.0797
1.6 1.1653 0.1014
1.8 0.1653 0.1537
2.0 0.0 0.0
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Figure 3: The exact and finite element solution at t =
0.005.

Figure 4: The difference between the exact and finite
element solution at t = 0.005.

Figure 5: The exact and finite element solution at t =
0.01.

Figure 6: The difference between the exact and finite
element solution at t = 0.01.
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